Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Cancer Res Clin Oncol ; 150(5): 248, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724804

RESUMO

INTRODUCTION: Endoscopic submucosal dissection (ESD) is a preferred treatment option for superficial esophageal squamous cell carcinoma (SESCC). However, only few studies compared long-term survival outcomes of ESD with surgery, especially for T1b SESCC. This study compared the overall survival (OS), disease-free survival (DSS), recurrence-free survival (RFS), and complication rates of both, to evaluate the value of ESD in patients with T1b SESCC. METHODS: We reviewed patients who underwent ESD (n = 47) or surgery (n = 73) for T1b SESCC at Affiliated Hospital of Nanjing University of Chinese Medicine from 2009 to 2021. To increase the precision of our results interpretation, subgroups were analyzed according to the depth of tumor invasion and elderly people. RESULTS: In the ESD and surgery groups, the overall mortality rates were 0/100 and 12.3/100 person years, incidence rates of recurrence were 2.13/100 and 11/100 person years, respectively. Kaplan-Meier survival analysis revealed no significant different in OS, DSS and RFS. Charlson comorbidity index (CCI) and depth of submucosal invasion were identified as risk factors for cancer recurrence in multivariate analysis. For elderly people, no significant differences were found in OS, DSS and RFS between different treatments. CONCLUSION: ESD are related to lower complication rates and shorter hospital stay than surgery in long-term outcomes for patients with pT1b SESCC. But in pT1b-SM2 patients, we still need long-term follow-up.


Assuntos
Ressecção Endoscópica de Mucosa , Neoplasias Esofágicas , Humanos , Masculino , Feminino , Neoplasias Esofágicas/cirurgia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/mortalidade , Ressecção Endoscópica de Mucosa/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Carcinoma de Células Escamosas do Esôfago/cirurgia , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/mortalidade , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Recidiva Local de Neoplasia/epidemiologia , Estadiamento de Neoplasias , Esofagectomia/métodos , Complicações Pós-Operatórias/epidemiologia , Taxa de Sobrevida
2.
PLoS Negl Trop Dis ; 18(5): e0012163, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713713

RESUMO

BACKGROUND: Toxoplasmosis affects a quarter of the world's population. Toxoplasma gondii (T.gondii) is an intracellular parasitic protozoa. Macrophages are necessary for proliferation and spread of T.gondii by regulating immunity and metabolism. Family with sequence similarity 96A (Fam96a; formally named Ciao2a) is an evolutionarily conserved protein that is highly expressed in macrophages, but whether it play a role in control of T. gondii infection is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we utilized myeloid cell-specific knockout mice to test its role in anti-T. gondii immunity. The results showed that myeloid cell-specific deletion of Fam96a led to exacerbate both acute and chronic toxoplasmosis after exposure to T. gondii. This was related to a defectively reprogrammed polarization in Fam96a-deficient macrophages inhibited the induction of immune effector molecules, including iNOS, by suppressing interferon/STAT1 signaling. Fam96aregulated macrophage polarization process was in part dependent on its ability to fine-tuning intracellular iron (Fe) homeostasis in response to inflammatory stimuli. In addition, Fam96a regulated the mitochondrial oxidative phosphorylation or related events that involved in control of T. gondii. CONCLUSIONS/SIGNIFICANCE: All these findings suggest that Fam96a ablation in macrophages disrupts iron homeostasis and inhibits immune effector molecules, which may aggravate both acute and chronic toxoplasmosis. It highlights that Fam96a may autonomously act as a critical gatekeeper of T. gondii control in macrophages.

3.
Fish Shellfish Immunol ; 149: 109570, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643956

RESUMO

The intensive aquaculture model has resulted in a heightened prevalence of diseases among farmed animals. It is imperative to identify healthy and efficacious alternatives to antibiotics for the sustainable progression of aquaculture. In this investigation, a strain of Lactobacillus acidophilus AC was introduced into the cultural water at varying concentrations (105 CFU/mL, 106 CFU/mL, 107 CFU/mL) to nourish zebrafish (Danio rerio). The findings revealed that L. acidophilus AC effectively increased the growth performance of zebrafish, improved the ion exchange capacity of gills, and enhanced hepatic antioxidant and immune-enzyme activities. Furthermore, L. acidophilus AC notably enhanced the intestinal morphology and augmented the activity of digestive enzymes within the intestinal tract. Analysis of intestinal flora revealed that L. acidophilus AC exerted a significant impact on the intestinal flora community, manifested by a reduction in the relative abundance of Burkholderiales, Candidatus_Saccharibacteria_bacterium, and Sutterellaceae, coupled with an increase in the relative abundance of Cetobacterium. Metabolomics analysis demonstrated that L. acidophilus AC significantly affected intestinal metabolism of zebrafish. PG (i-19:0/PGE2) and 12-Hydroxy-13-O-d-glucuronoside-octadec-9Z-enoate were the metabolites with the most significant up- and down-regulation folds, respectively. Finally, L. acidophilus AC increased the resistance of zebrafish to Aeromonas hydrophila. In conclusion, L. acidophilus AC was effective in enhancing the health and immunity of zebrafish. Thus, our findings suggested that L. acidophilus AC had potential applications and offered a reference for its use in aquaculture.

4.
iScience ; 27(4): 109515, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38591010

RESUMO

Transient anoxia causes amnesia and neuronal death. This is attributed to enhanced glutamate release and modeled as anoxia-induced long-term potentiation (aLTP). aLTP is mediated by glutamate receptors and nitric oxide (·NO) and occludes stimulation-induced LTP. We identified a signaling cascade downstream of ·NO leading to glutamate release and a glutamate-·NO loop regeneratively boosting aLTP. aLTP in entothelial ·NO synthase (eNOS)-knockout mice and blocking neuronal NOS (nNOS) activity suggested that both nNOS and eNOS contribute to aLTP. Immunostaining result showed that eNOS is predominantly expressed in vascular endothelia. Transient anoxia induced a long-lasting Ca2+ elevation in astrocytes that mirrored aLTP. Blocking astrocyte metabolism or depletion of the NMDA receptor ligand D-serine abolished eNOS-dependent aLTP, suggesting that astrocytic Ca2+ elevation stimulates D-serine release from endfeet to endothelia, thereby releasing ·NO synthesized by eNOS. Thus, the neuro-glial-endothelial axis is involved in long-term enhancement of glutamate release after transient anoxia.

6.
Sci Rep ; 14(1): 3112, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326407

RESUMO

Corticotropin-releasing hormone-binding protein (CRHBP) is involved in many physiological processes. However, it is still unclear what role CRHBP has in tumor immunity and prognosis prediction. Using databases such as the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Tumor Protein Database, Timer Database, and Gene Expression Profiling Interactive Analysis (GEPIA), we evaluated the potential role of CRHBP in diverse cancers. Further research looked into the relationships between CRHBP and tumor survival prognosis, immune infiltration, immune checkpoint (ICP) indicators, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), DNA methylation, tumor microenvironment (TME), and drug responsiveness. The anticancer effect of CRHBP in liver hepatocellular carcinoma (LIHC) was shown by Western blotting, EdU staining, JC-1 staining, transwell test, and wound healing assays. CRHBP expression is significantly low in the majority of tumor types and is associated with survival prognosis, ICP markers, TMB, and microsatellite instability (MSI). The expression of CRHBP was found to be substantially related to the quantity of six immune cell types, as well as the interstitial and immunological scores, showing that CRHBP has a substantial impact in the TME. We also noticed a link between the IC50 of a number of anticancer medicines and the degree of CRHBP expression. CRHBP-related signaling pathways were discovered using functional enrichment. Cox regression analysis showed that CRHBP expression was an independent prognostic factor for LIHC. CRHBP has a tumor suppressor function in LIHC, according to cell and molecular biology trials. CRHBP has a significant impact on tumor immunity, treatment, and prognosis, and has the potential as a cancer treatment target and prognostic indicator.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Instabilidade de Microssatélites , Prognóstico , Bases de Dados de Proteínas , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Microambiente Tumoral/genética
7.
J Transl Med ; 22(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166990

RESUMO

BACKGROUND: Diabetes mellitus (DM) is a progressive disease that involves multiple organs due to increased blood glucose, and diabetic retinopathy (DR) is the main complication of DM in the eyes and causes irreversible vision loss. In the pathogenesis of diabetic vascular disease, oxidative stress caused by hyperglycemia plays an important role in Müller cell impairment. In recent years, AdipoRon, an adiponectin analog that demonstrated important physiological functions in obesity, diabetes, inflammation, and cardiovascular diseases, demonstrated cellular protection from apoptosis and reduced inflammatory damage through a receptor-dependent mechanism. Here, we investigated how AdipoRon reduced oxidative stress and apoptosis in Müller glia in a high glucose environment. RESULTS: By binding to adiponectin receptor 1 on Müller glia, AdipoRon activated 5' adenosine monophosphate-activated protein kinase (AMPK)/acetyl-CoA carboxylase phosphorylation downstream, thereby alleviating oxidative stress and eventual apoptosis of cells and tissues. Transcriptome sequencing revealed that AdipoRon promoted the synthesis and expression of early growth response factor 4 (EGR4) and inhibited the cellular protective effects of AdipoRon in a high-glucose environment by reducing the expression of EGR4. This indicated that AdipoRon played a protective role through the EGR4 and classical AMPK pathways. CONCLUSIONS: This provides a new target for the early treatment of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Proteínas Quinases Ativadas por AMP/metabolismo , Retinopatia Diabética/tratamento farmacológico , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Glucose , Fosforilação , Receptores de Adiponectina/metabolismo , Animais , Camundongos
8.
Mol Diagn Ther ; 28(1): 53-67, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37897655

RESUMO

MicroRNAs (miRNAs) are endogenous noncoding RNAs that mediate the fibrotic process by regulating multiple targets. MicroRNA-based therapy can restore or inhibit miRNA expression and is expected to become an effective approach to prevent and alleviate fibrotic diseases. However, the safe, targeted, and effective delivery of miRNAs is a major challenge in translating miRNA therapy from bench to bedside. In this review, we briefly describe the pathophysiological process of fibrosis and the mechanism by which miRNAs regulate the progression of fibrosis. Additionally, we summarize the miRNA nanodelivery tools for fibrotic diseases, including chemical modifications and polymer-based, lipid-based, and exosome-based delivery systems. Further clarification of the role of miRNAs in fibrosis and the development of a novel nanodelivery system may facilitate the prevention and alleviation of fibrotic diseases in the future.


Assuntos
MicroRNAs , Humanos , MicroRNAs/metabolismo , Fibrose , Polímeros
9.
Am J Cancer Res ; 13(11): 5698-5718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058833

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent cancer with limited effective treatments. Eribulin mesylate is a novel chemotherapy drug that inhibits microtubule elongation and may impact the tumor microenvironment and immune pathway. This study aims to investigate the impact of changes in microtubule acetylation levels on HCC development and treatment outcomes. Clinical and molecular data were aggregated from databases, with survival analysis conducted to evaluate the relevance of microtubule acetylation. In vitro experiments using HCC cell lines and a tumor cell transplantation model in C57BL/c mice were performed to investigate the effects of microtubule acetylation on Eribulin treatment. A significant correlation was found between the level of lysine 40 acetylation of α-tubulin (acetyl-α-tubulin-lys40) and overall survival of HCC patients, with a better prognosis associated with a lower level of acetyl-α-tubulin-lys40. Knocking down ATAT1 or overexpressing HDAC6 reduced the level of acetyl-α-tubulin-lys40 and sensitized Eribulin treatment both in vitro and in vivo. In summary, acetyl-α-tubulin-lys40 was increased in HCC and was associated with a shorter overall survival of HCC patients. Reducing the level of acetyl-α-tubulin-lys40 can enhance sensitivity to Eribulin treatment both in vitro and in vivo, thereby establishing acetyl-α-tubulin-lys40 as a potential prognostic marker and predictive indicator for Eribulin treatment in HCC patients.

11.
Biochem Biophys Rep ; 35: 101546, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37731665

RESUMO

The incorporation of probiotics into the diet of large yellow croaker has been demonstrated by several studies to confer partial disease resistance. Bacillus halophilic isolated from the intestinal flora was used to study its effects on performance growth indicators, intestinal tissue structure, intestinal flora and the metabolism of Larimichthys crocea. A total of 180 fishes with an initial body weight of (164.00 ± 54.00) g were fed diets with three different concentrations of Bacillus halophilic: 0 cfu/mL (FC0, control group), 108 cfu/mL (FC8, treatment group), and 1012 cfu/mL (FC12, treatment group). The results showed that there were no significant differences in specific growth rate among all groups (P > 0.05). Compared to the FC0 group, the final body weight and Weight gain rate were significantly higher in FC8 and FC12 groups (P < 0.05). The Survival of the FC12 group significantly improved (P < 0.05). Compared to the FC0 group, crude protein content in muscle of the FC8 group significantly increased (P < 0.05), crude fat content significantly increased in the FC12 group (P < 0.05), crude protein content in whole fish experimental groups significantly increased (P < 0.05), and ash content significantly increased in the FC8 group (P < 0.05). In terms of antioxidant ability, the content of LZM in blood increased significantly in the FC8 group (P < 0.05), GSH content in liver of the FC12 group increased significantly (P < 0.05), while the content of MDA and AKP in blood and liver had no significant difference (P > 0.05). At the level of intestinal structure, there were no significant differences in villus height, crypt depth and goblet cell number between control group and treatment groups (P > 0.05). At the phylum level, Firmicutes was the dominant phylum, and the genus level, Lactobacillus and Bacteroides were the dominant bacteria in FC8 and FC12. A total of 1070 metabolites were identified, among which lipid metabolites accounted for 46.7%. Metabolites were involved in six main ways, mainly related to the metabolism of amino acids and lipids. The correlation analysis between microbes and metabolites showed that the intestinal flora of Larimichthys crocea could promote the synthesis of metabolites, among which Bacteroides and Megamonas could promote the synthesis of beneficial metabolites such as amino acids and vitamins. Through this study, we found that Bacillus halophilic can significantly improve growth, the antioxidant immunity ability and promote the expression of growth related metabolites, with the FC12 group being the better successful.

12.
Eur J Gastroenterol Hepatol ; 35(10): 1143-1148, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37577787

RESUMO

OBJECTIVES: Small bowel (SB) endoscopic healing has not been well explored in patients with Crohn's disease (CD). This study aimed to assess the clinical utility of SB endoscopic mucosal and histological healing in patients with CD. METHODS: In total, 99 patients with CD in clinical-serological remission were retrospectively followed after they underwent colonoscopy and double-balloon enteroscopy. Time until clinical relapse (CD activity index of >150 with an increase of >70 points) and serological relapse (abnormal elevation of C-reactive protein levels) constituted the primary endpoints. RESULTS: Of the 99 patients, 75 (74.7%) exhibited colonoscopic healing and 43 (43.4%) exhibited SB endoscopic healing. Clinical relapse, serological relapse, hospitalization, and surgery occurred in 8 (18.6%), 11 (25.6%), 11 (25.6%), and 2 (4.6%) patients, respectively. Of the 43 patients who exhibited SB endoscopic healing, 21 (48.8%) achieved histological healing. Clinical relapse, serological relapse, hospitalization, and surgery occurred in 4 (19.0%), 7 (33.3%), 7 (33.3%), and 1 (4.8%) patient, respectively. There was no statistically significant difference in the number of patients who relapsed, were hospitalized, or underwent surgery between those who exhibited histological healing and those who did not. CONCLUSION: A substantial number of patients who were in clinical-serological remission did not undergo SB endoscopic healing, and the lesions increased their risk of clinical relapse. Thus, endoscopic healing may be of greater clinical value than histological healing when evaluating the remission of patients with CD.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/patologia , Estudos Retrospectivos , Intestino Delgado/patologia , Colonoscopia , Indução de Remissão , Recidiva , Índice de Gravidade de Doença
13.
Clin Transl Med ; 13(7): e1337, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37477089

RESUMO

BACKGROUND: Energy balance has long been known to extend lifespans and inhibit carcinogenesis in multiple species by slowing age-related epigenetic changes while the underlying mechanisms remain largely unknown. Herein, we found that starvation activated autophagy to remodel the DNA methylation profile by inhibiting DNMT3a expression. METHODS: Illumina Infinium MethylationEPIC BeadChip and dot blot assay were performed to quantify the global DNA methylation level. Protein-RNA interactions were validated through RNA immunoprecipitation and RNA pull-down assay. In vitro and in vivo experiments were carried out to testify the effect of DNMT3a on chemoresistance. RESULTS: Autophagy is impaired in chemoresistance which was associated with differential DNA methylation and could be reversed by DNMT3a inhibition. Autophagy activation decreases the expression of DNMT3a mRNA, accompanied with the downregulation of chemoresistance-related Linc00942. Knockdown of Linc00942 reduces DNMT3a expression and genome-wide DNA methylation while Linc00942 overexpression increased DNMT3a expression and correlated hypermethylation in cancer cells and primary tumour tissues. Mechanistically, Linc00942 recruits RNA methyltransferase METTL3 to stimulate N6-methyladenosine (m6A) deposit on DNMT3a transcripts, triggering IGF2BP3/HuR to recognize modified mRNA for reinforced stability. SQSTM1/p62 recruits Linc00942 for autophagic degradation which can be abrogated after autophagy inhibition by p62 knockdown or chloroquine treatment. CONCLUSIONS: Inhibition of autophagy increases Linc00942 expression to promote chemoresistance and autophagy activation or hypomethylating agent decitabine restores chemosensitivity by reducing global DNA methylation. Overall, this study identifies a novel methylation cascade linking impaired RNautophagy to global hypermethylation in chemoresistance, and provides a rationale for repurposing decitabine to overcome chemoresistance in cancer treatment.


Assuntos
Metilação de DNA , Neoplasias Gástricas , Humanos , Metilação de DNA/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Decitabina , RNA , RNA Mensageiro , Metiltransferases/genética
14.
Exp Eye Res ; 234: 109576, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490994

RESUMO

Wet age-related macular degeneration (wAMD) is the main cause of irreversible blindness in the elderly, and its pathogenesis is still not fully understood. Long non-coding RNAs (lncRNAs) participated in the pathogenesis of a number of neovascular diseases, but their role in wAMD is less known. In order to reveal the potential role of lncRNAs in wAMD, we used high-throughput sequencing to assess lncRNAs and mRNAs expression profile in the aqueous humor of patients with wAMD and of patients with age-related cataract as control. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to identify the potential biological functions and signaling pathways of RNA. A coding-non-coding gene co-expression (CNC) network was constructed to identify the interaction of lncRNAs and mRNAs. Quantitative PCR was used to validate the expression of selected lncRNAs. We identified 1071 differentially expressed lncRNAs and 3658 differentially expressed mRNAs in patients with wAMD compared to controls. GO and KEGG analyses suggested that differentially expressed lncRNAs-coexpressed mRNAs were mainly enriched in Rab GTPase binding, GTPase activation, RAS signaling pathway and autophagy. The top 100 differentially expressed genes were selected to build the CNC network, which could be connected by 416 edges. LncRNAs are differentially expressed in the aqueous humor of patients with wAMD and they are involved in several pathogenetic pathways. These dysregulated lncRNAs and their target genes could represent promising therapeutic targets in wAMD.


Assuntos
Degeneração Macular , RNA Longo não Codificante , Humanos , Idoso , Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , Humor Aquoso/metabolismo , Transdução de Sinais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Redes Reguladoras de Genes
15.
J Proteome Res ; 22(7): 2293-2306, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37329324

RESUMO

As a vision-threatening complication of diabetes mellitus (DM), proliferative diabetic retinopathy (PDR) is associated with sustained metabolic disorders. Herein, we collected the vitreous cavity fluid of 49 patients with PDR and 23 control subjects without DM for metabolomics and lipidomics analyses. Multivariate statistical methods were performed to explore relationships between samples. For each group of metabolites, gene set variation analysis scores were generated, and we constructed a lipid network by using weighted gene co-expression network analysis. The association between lipid co-expression modules and metabolite set scores was investigated using the two-way orthogonal partial least squares (O2PLS) model. A total of 390 lipids and 314 metabolites were identified. Multivariate statistical analysis revealed significant vitreous metabolic and lipid differences between PDR and controls. Pathway analysis showed that 8 metabolic processes might be associated with the development of PDR, and 14 lipid species were found to be altered in PDR patients. Combining metabolomics and lipidomics, we identified fatty acid desaturase 2 (FADS2) as an important potential contributor to the pathogenesis of PDR. Collectively, this study integrates vitreous metabolomics and lipidomics to comprehensively unravel metabolic dysregulation and identifies genetic variants associated with altered lipid species in the mechanistic pathways for PDR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Lipidômica , Corpo Vítreo/metabolismo , Metabolômica , Lipídeos
16.
Theranostics ; 13(6): 1892-1905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064870

RESUMO

Regulatory T cells (Tregs) are critical for generating and maintaining peripheral tolerance. Treg-based immunotherapy is valuable for the clinical management of diseases resulting from dysregulation of immune tolerance. However, the lack of potency is a potential limitation of Treg therapy. In addition, CD69 positive-Treg (CD69+ Treg) represent a newly identified subset of Tregs with potent immune suppressive capability. Methods: Foxp3 YFP-Cre CD69 fl/fl and CD4 Cre CD69 fl/fl mice were generated to determine the relevance of CD69 to Treg. Chromatin Immunoprecipitation Assay (ChIP) and luciferase Assay were performed to detect the regulation of CD69 transcription by heat shock transcription factor 1(HSF1). Gene expression was measured by western blotting and qRT-PCR. The differentiation of naive T cells to CD69+Foxp3+ iTregs was determined by flow cytometry. The immunosuppressive ability of Tregs was analyzed by ELISA and flow cytometry. Colon inflammation in mice was reflected by changes in body weight and colon length, the disease activity index (DAI), and H&E staining of colon tissues. Results: Induced Tregs (iTregs) from CD4 Cre CD69 fl/fl mice failed to alleviate colitis. The transcription factor HSF1 interacted with the promoter of the CD69 gene to prompt its transcription during Treg differentiation. Genetic and chemical inhibition of HSF1 impaired CD69+ Treg differentiation and promoted the pathogenesis of colitis in mice. In contrast, HSF1 protein stabilized by inhibiting its proteasomal degradation promoted CD69+ Treg differentiation and alleviated colitis in mice. Moreover, adoptive transfer of iTregs with HSF1 stabilization by proteasome inhibitor (PSI) dramatically prevented the development of colitis in mice and was accompanied by decreased production of pro-inflammatory cytokines and reduced accumulation of pro-inflammatory lymphocytes in colitis tissue, whereas Tregs induced in the absence of PSI were less stable and ineffective in suppressing colitis. Conclusions: HSF1 promotes CD69+ Tregs differentiation by activating the CD69 transcription, which is critical for the immunosuppressive function of Tregs. Stabilization of HSF1 by PSIs results in the efficient generation of Tregs with high potency to treat colitis and probably other autoimmune diseases involving Tregs deficiency.


Assuntos
Colite , Linfócitos T Reguladores , Camundongos , Animais , Fatores de Transcrição de Choque Térmico/metabolismo , Colite/patologia , Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Camundongos Endogâmicos C57BL
17.
Heliyon ; 9(4): e15123, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37089301

RESUMO

Objective: Retinal hard exudates (HEs) result from lipoproteins leaking from capillaries into extracellular retinal space, and are related to decreased visual acuity in diabetic retinopathy (DR). This study aims to identify differential serum lipids and metabolites associated with HEs. Materials and methods: A cross-sectional study was conducted Jul 2017 âˆ¼ Mar 2021. We assessed the amount of HEs using standard ETDRS photographs for comparison. HEs severity was rated as "no or questionable", "moderate" or "severe". Serum samples were processed via high coverage pseudotargeted lipidomics analysis, and untargeted liquid chromatography coupled with time-of-flight mass spectrometry for metabolomics study, respectively. Weighted gene co-expression network analyses, partial least squares-discriminant analysis, and multi-receiver operating characteristic analysis were applied. Results: A total of 167 patients were included. Discovery group: 116 eyes (116 patients). Validation group: 51 eyes (51 patients). 888 lipids were detected and divided into 18 modules (MEs), ME1 âˆ¼ ME18. Lipids in ME1 significantly increased in patients with HEs in DR (NPDR and PDR combined), NPDR, and PDR, respectively. ME1 enriched to triglycerides (29%), ceramides (17%), and N-acylethanolamines (15%). A combined model of 20 lipids was the best to discriminate HEs, area under curve = 0.804, 95% confidence interval = 0.674-0.916. For metabolomics analysis, 19 metabolites and 13 pathways associated with HEs were identified. Taurine and hypotaurine metabolism, cysteine and methionine metabolism were closely related to HEs (P < 0.01). Conclusions: The lipids and metabolites identified may serve as prediction biomarkers in the early stage of HEs in DR.

18.
Fish Shellfish Immunol ; 136: 108719, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37003497

RESUMO

The large yellow croaker (Larimichthys crocea) is the most productive mariculture fish in China, and its aquaculture scale is expanding along the southeastern coast of China, but that development is causing environmental damage by increasing the use of antibiotics and other chemicals. How to improve fish immunity through non-antibiotic substances is still a problem facing aquaculture industry. At present, the experiments have shown that Isaria cicadae spent substrate (IC) can improve the growth performance and immunity of Oreochromis niloticus. Therefore, I. cicadae may be a natural alternative to antibiotic for aquaculture. In order to study the effects of IC on growth performance, serum biochemical indices, intestinal microbiota, and intestinal metabolism of large yellow croakers, the fish were divided into three groups with three replicates in each group. Basal diet, basal diet with 2% and 6% IC supplementation (IC2 and IC6 groups), respectively. The results showed that weight gain rate (WG) and specific growth rate (SGR) of large yellow croaker significantly increased (P < 0.05) in IC6 group. The content of triglyceride (TG), low density lipoprotein cholesterol (LDL-C), total protein (TP) and albumin (ALB) increased significantly (P < 0.05), and total cholesterol (T-CHO) decreased significantly (P < 0.05) in IC2 group. Compared to IC0 group, the activity of malondialdehyde (MDA) , superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) increased significantly (P < 0.05) in IC2 group, the activity of total antioxidant capacity (T-AOC) and GSH-Px increased significantly (P < 0.05) in IC6 group, and the activity of lysozyme (LZM) increased significantly in IC2 and IC6 groups. The addition of IC in the diets significantly increased the diversity of the microbial community in the intestine of large yellow croaker (P < 0.05), significantly improved the relative abundance of Acidobacteriota (P < 0.05) at the phylum level, and reduced the relative abundance of Bacteroidota, Desulfobacterota, and Synergistota (P < 0.05). At the genus level, the relative abundance of Bacteroides, Cetobacterium and Mycoplasma, which are dominant bacteria in fish gut, significantly increased (P < 0.05). The relative abundance of Ruminofilibacter, Desulfomicrobium, DMER64, Syntrophomonas, Hydrogenophaga, and Aminobacterium reduced significantly (P < 0.05). Among them, Ruminofilibacter, DMER64, Syntrophomonas and Hydrogenophaga are bacteria that can participate in the hydrolysis and acidification of organic matter, while DMER64 is the hydrogen carrier. The intestinal metabolome analysis showed that IC could improve metabolic composition and function, which was related to host immunity and metabolism. In conclusion, I. cicadae can improve the growth performance, regulate the lipid metabolism and immune and antioxidant capacity of large yellow croakers by regulating intestinal microbiota and intestinal metabolism. This study provides a reference for the application of IC in aquaculture.


Assuntos
Ciclídeos , Microbioma Gastrointestinal , Animais , Antioxidantes/metabolismo , Dieta/veterinária , Ciclídeos/metabolismo , Metaboloma
19.
Nutr Neurosci ; 26(12): 1183-1193, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36342063

RESUMO

OBJECTIVE: Consumption of a modern Western-type high-fat low-fiber diet increases the risk of obesity. However, how a host responds to such a diet, especially during the early period of dietary transition from a previous low-fat and fiber-rich diet, remains poorly explored. METHODS: Wild-type C57BL/6 mice were fed a normal chow diet or a high-fat diet. Enteric glial cell (EGC) activation was detected through quantitative real-time PCR (qRT-PCR), immunoblotting and immunohistology analysis. Fluorocitrate or genetic deletion of glial fibrillary acidic protein (GFAP)-positive glial-intrinsic myeloid differentiation factor 88 (Myd88) was used to inhibit EGC activation, and the effect of a high-fat diet on obesity was further investigated. The role of MYD88-dependent sensing of commensal products in adipocyte was observed to analyze the effect of obesity. RESULTS: A dietary shift from a normal chow diet to a high-fat diet in mice induced a transient early-phase emergence of a GFAP-positive EGC network in the lamina propria of the ileum, accompanied with an increase in glial-derived neurotrophic factor production. Inhibition of glial cell activity blocked this response. GFAP-positive glial Myd88 knockout mice gained less body weight after high-fat diet (HFD) feeding than littermate controls. In contrast, adipocyte deletion of Myd88 in mice had no effect on weight gain but instead exacerbated glucose intolerance. Furthermore, short-term fluorocitrate intervention during HFD feeding attenuated body weight gain. CONCLUSIONS: Our findings indicate that EGCs are early responders to intestinal ecosystem changes and the GFAP-positive glial Myd88 signaling participates in regulating obesity.


Assuntos
Ecossistema , Fator 88 de Diferenciação Mieloide , Animais , Camundongos , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Mucosa/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Neuroglia/metabolismo , Obesidade/metabolismo , Aumento de Peso
20.
Graefes Arch Clin Exp Ophthalmol ; 261(1): 49-55, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35838805

RESUMO

PURPOSE: To investigate the predictive role of serum angiopoietin-1 and angiopoietin-2 (Ang-1/Ang-2) in evaluating the severity of diabetic retinopathy (DR). METHODS: A total of 101 outpatients with type 2 diabetes mellitus (T2DM) were recruited and were further divided into the following five groups: T2DM without DR (non-DR), mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR and proliferative DR (PDR) in accordance with the International Clinical Diabetic Retinopathy Guidelines. Furthermore, 101 serum samples were included in the further analysis using enzyme-linked immunosorbent assays. A receiver operating characteristic (ROC) curve was plotted to evaluate the diagnostic value of each index. RESULTS: The expression of Ang-1 in the PDR group was significantly lower than that in the non-DR group, while Ang-2 showed an opposite upward trend (p < 0.05). The Ang-1/Ang-2 ratio of the non-DR group was significantly lower than that of the moderate NPDR, severe NPDR and PDR (p < 0.05, p < 0.01 and p < 0.01, respectively). Differences in the Ang-1/Ang-2 ratio were observed earlier than those in the individual Ang-1 and Ang-2 measurements. The maximal Youden index was 0.512 with a calculated area under the curve (AUC) value of 0.734 (p < 0.01). CONCLUSIONS: The Ang-1/Ang-2 ratio was helpful in assessing the severity of DR and may provide potential clinical benefits as a biomarker and early warning signs for DR diagnosis.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Angiopoietina-1 , Biomarcadores , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA